If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64=4k^2
We move all terms to the left:
64-(4k^2)=0
a = -4; b = 0; c = +64;
Δ = b2-4ac
Δ = 02-4·(-4)·64
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32}{2*-4}=\frac{-32}{-8} =+4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32}{2*-4}=\frac{32}{-8} =-4 $
| 2x^2=17x-6 | | -4x+23=5(3x-3) | | x-23=3(2x-5)-3 | | 3x+(x÷3)=160 | | k^2-6k+27=0 | | 2(5+x)=12x-120 | | 2(5+x)=12x-120 | | 6x-6x^2=12x | | 13/14=26/c | | 9x-13=2x-48 | | 7x-2x-5x=15-1+5 | | f)10)=3(10)-7 | | X+3x+28=176 | | -2(d-2)=2d-20 | | 3(t+2)=16 | | x^2+11x30=0 | | 13-3x=7x-2 | | 2x+40=5x-20 | | -2q(4q-9)=q(-8q+15)-3(-4q-6) | | -5x-40=4(x-1) | | -2(d-2)+4=2d-20 | | 8l-16=1+12 | | 2x-24=2(2x-3) | | 5u=2u-6 | | k^2=7k+30 | | x*(-4)=-68 | | k^2-10k=-96=0 | | 4(5z-9)–3(2z+8)=108 | | 4(5z-9)-3(2z+8)=108 | | k^2-8k+3=0 | | 6–8(2x–4)=–58 | | 2x3−1=7 |